Benefits of the Great River Energy Project

Clean Coal Power Initiative

Demonstration of a Lignite Fuel Enhancement System

James R. Longanbach, Office of Project Management National Energy Technology Laboratory

Executive Summary

- Demonstration projects are critical to successful commercialization of technology developed under DOE's Fossil Energy R&D program.
- Successful commercial application of the Lignite Fuel Enhancement System in the United States would significantly reduce emissions.
 - 6,890 tons per year of NO_x
 - 18,360 tons per year of SO₂
 - -7,084,810 tons per year of CO_2
 - 9,340 tons per year of particulates
 - 297 pounds per year of mercury
- As much as \$55 million could be saved by power companies using the Lignite Fuel Enhancement System.

Outline

- Description of the Lignite Fuel Enhancement System.
- Quantitative estimates of the benefits of the Great River Energy project.
 - Benefits to the Nation
 - Benefits to Great River Energy's Coal Creek plant
- Approach used to calculate benefits.

Great River Energy Project

- A 546 MW_e demonstration of the Lignite Fuel Enhancement System.
- Installed on a PC Boiler with a tangential firing configuration using North Dakota lignite at Great River Energy's Coal Creek Station Unit 1, Underwood, ND.

Coal Creek Station

Total project funding: \$22,000,000
 DOE share: \$11,000,000 (50%)

Lignite Fuel Enhancement System

- Uses waste heat to reduce the moisture content of the feed coal.
- Reduces NO_x, SO₂, CO₂, particulate, and Hg emissions while reducing plant heat rate.
- Forecast to be installed on 10.0 GWe of existing coal-fired capacity.

Advantages of the Lignite Fuel Enhancement System

- Reduces plant heat rate.
- Reduces fuel and maintenance costs.
- Has potential to increase plant generating capacity.
- Reduces emissions of SO₂, NO_x,
 CO₂, mercury, and particulate matter.
- Reduces make-up water requirements.

Anticipated Performance at Coal Creek Station

- Overall performance improved by 5%.
- Cost of generation reduced by \$0.70/MWh (\$3 Million per year).
- Less duct erosion and maintenance cost.
- Reduction in fan and mill power.
- Increased reliability: fewer outages.
- 7% reduction in NO_x, CO₂, Hg, and particulate emissions.
- 25% reduction in SO₂ emissions.

Competing Technology Options

 Drying not integrated with plant heat cycle.

Estimated Reductions in National Pollution Emissions from Commercialization

	Emission Reduction ¹ , tons/year	Current Emissions from all Coal-fired Boilers in the United States ² , tons/year
NO _x	6,890	4,611,940
SO ₂	18,360	10,773,220
CO ₂	7,084,810	2,133,109,930
Particulate Matter	9,340	522,360
Mercury	0.15	48.6

¹ Basis: 10.0 GWe market penetration

² Source: NETL Coal Power Data Base

Additional National Benefits from Commercialization

Lignite Fuel Enhancement
 System could save \$55
 million in operating costs
 when installed on 10.0 GWe of existing power plants.

Benefits of Technology for Coal Creek

Pollutant	Annual Emission Reduction
NO _x	376 tons
SO ₂	3,580 tons
CO ₂	386,860 tons
Particulate Matter	510 tons
Mercury	16.2 pounds

Total Emissions at the Coal Creek Plant are estimated to decrease by 7% to 25% due to the installation of the Lignite Fuel Enhancement System.

Additional Benefits for Coal Creek

- The Lignite Fuel Enhancement System is estimated to save about \$3 million in annual operating cost.
- Additional benefits include:
 - Lower maintenance costs
 - Higher availability
 - Potential to increase capacity by 14 MW_e
 - Reduced ductwork erosion
 - Lower parasitic power

Approach to Estimating Benefits

- Forecast market penetration.
- Quantify differences between performance of conventional power plant with and without Lignite Fuel Enhancement System being demonstrated.
 - Pollutant emissions, tons per year
 - Operating costs

Assumed Market Penetration

- Individual boilers most likely to install the Lignite Fuel Enhancement System were selected from the NETL Coal Power Data Base and UDI data.
- These target boilers were selected based on the use of lignite, subbitiminous coal, or a blend of the two.

Assumed Market Penetration (continued)

- 100,162 MW_e of total market potential.
- Assumed market penetration of 10% resulting in 10.0 GW_e of existing power plants selected.

Differences in Performance - Total Emissions-

- Total emissions from Coal Creek Unit 1 are from the NETL Coal Power Data Base.
- Total emissions after installation of the technology on these boilers were estimated by taking the reductions at Coal Creek to be representative.

Differences in Operating Cost

- For this analysis, the lower operating cost is due to decreased coal demand at a given power output and reduced parasitic power demands.
- Participants data used to quantify savings.
- The cost savings associated with the Lignite Fuel Enhancement System at Coal Creek are multiplied by the assumed market penetration (10.0 GW_e of existing coal-fired capacity).

Conclusions

 There are significant benefits to the nation that will be realized by the commercialization of technologies being demonstrated in the Power Plant Improvement and Clean Coal Power Initiatives.

Visit the NETL web site for information on all Power Plant Improvement Initiative and Clean Coal Power Initiative projects.

www.netl.doe.gov/coalpower/ccpi

